Metamath Proof Explorer


Theorem negcl

Description: Closure law for negative. (Contributed by NM, 6-Aug-2003)

Ref Expression
Assertion negcl AA

Proof

Step Hyp Ref Expression
1 df-neg A=0A
2 0cn 0
3 subcl 0A0A
4 2 3 mpan A0A
5 1 4 eqeltrid AA