Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
negcl
Next ⟩
negicn
Metamath Proof Explorer
Ascii
Unicode
Theorem
negcl
Description:
Closure law for negative.
(Contributed by
NM
, 6-Aug-2003)
Ref
Expression
Assertion
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
df-neg
⊢
−
A
=
0
−
A
2
0cn
⊢
0
∈
ℂ
3
subcl
⊢
0
∈
ℂ
∧
A
∈
ℂ
→
0
−
A
∈
ℂ
4
2
3
mpan
⊢
A
∈
ℂ
→
0
−
A
∈
ℂ
5
1
4
eqeltrid
⊢
A
∈
ℂ
→
−
A
∈
ℂ