Metamath Proof Explorer


Theorem 0cn

Description: Zero is a complex number. See also 0cnALT . (Contributed by NM, 19-Feb-2005)

Ref Expression
Assertion 0cn 0

Proof

Step Hyp Ref Expression
1 ax-i2m1 i i + 1 = 0
2 ax-icn i
3 mulcl i i i i
4 2 2 3 mp2an i i
5 ax-1cn 1
6 addcl i i 1 i i + 1
7 4 5 6 mp2an i i + 1
8 1 7 eqeltrri 0