Metamath Proof Explorer
Theorem 0cn
Description: Zero is a complex number. See also 0cnALT . (Contributed by NM, 19-Feb-2005)
|
|
Ref |
Expression |
|
Assertion |
0cn |
⊢ 0 ∈ ℂ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ) → ( i · i ) ∈ ℂ ) |
4 |
2 2 3
|
mp2an |
⊢ ( i · i ) ∈ ℂ |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
addcl |
⊢ ( ( ( i · i ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · i ) + 1 ) ∈ ℂ ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( i · i ) + 1 ) ∈ ℂ |
8 |
1 7
|
eqeltrri |
⊢ 0 ∈ ℂ |