Metamath Proof Explorer


Theorem eqeltrri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltrri.1 𝐴 = 𝐵
eqeltrri.2 𝐴𝐶
Assertion eqeltrri 𝐵𝐶

Proof

Step Hyp Ref Expression
1 eqeltrri.1 𝐴 = 𝐵
2 eqeltrri.2 𝐴𝐶
3 1 eqcomi 𝐵 = 𝐴
4 3 2 eqeltri 𝐵𝐶