Metamath Proof Explorer


Theorem eleqtri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993)

Ref Expression
Hypotheses eleqtri.1 𝐴𝐵
eleqtri.2 𝐵 = 𝐶
Assertion eleqtri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 eleqtri.1 𝐴𝐵
2 eleqtri.2 𝐵 = 𝐶
3 2 eleq2i ( 𝐴𝐵𝐴𝐶 )
4 1 3 mpbi 𝐴𝐶