Metamath Proof Explorer


Theorem eleqtri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993)

Ref Expression
Hypotheses eleqtri.1
|- A e. B
eleqtri.2
|- B = C
Assertion eleqtri
|- A e. C

Proof

Step Hyp Ref Expression
1 eleqtri.1
 |-  A e. B
2 eleqtri.2
 |-  B = C
3 2 eleq2i
 |-  ( A e. B <-> A e. C )
4 1 3 mpbi
 |-  A e. C