Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqeltri.1 | ⊢ 𝐴 = 𝐵 | |
eqeltri.2 | ⊢ 𝐵 ∈ 𝐶 | ||
Assertion | eqeltri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltri.1 | ⊢ 𝐴 = 𝐵 | |
2 | eqeltri.2 | ⊢ 𝐵 ∈ 𝐶 | |
3 | 1 | eleq1i | ⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) |
4 | 2 3 | mpbir | ⊢ 𝐴 ∈ 𝐶 |