Metamath Proof Explorer


Theorem eqeltri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltri.1 𝐴 = 𝐵
eqeltri.2 𝐵𝐶
Assertion eqeltri 𝐴𝐶

Proof

Step Hyp Ref Expression
1 eqeltri.1 𝐴 = 𝐵
2 eqeltri.2 𝐵𝐶
3 1 eleq1i ( 𝐴𝐶𝐵𝐶 )
4 2 3 mpbir 𝐴𝐶