Metamath Proof Explorer


Theorem eqeltri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltri.1 A=B
eqeltri.2 BC
Assertion eqeltri AC

Proof

Step Hyp Ref Expression
1 eqeltri.1 A=B
2 eqeltri.2 BC
3 1 eleq1i ACBC
4 2 3 mpbir AC