Metamath Proof Explorer


Theorem eqeltri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltri.1 A = B
eqeltri.2 B C
Assertion eqeltri A C

Proof

Step Hyp Ref Expression
1 eqeltri.1 A = B
2 eqeltri.2 B C
3 1 eleq1i A C B C
4 2 3 mpbir A C