Metamath Proof Explorer


Theorem eqeltrri

Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses eqeltrri.1
|- A = B
eqeltrri.2
|- A e. C
Assertion eqeltrri
|- B e. C

Proof

Step Hyp Ref Expression
1 eqeltrri.1
 |-  A = B
2 eqeltrri.2
 |-  A e. C
3 1 eqcomi
 |-  B = A
4 3 2 eqeltri
 |-  B e. C