Metamath Proof Explorer


Theorem addcl

Description: Alias for ax-addcl , for naming consistency with addcli . Use this theorem instead of ax-addcl or axaddcl . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion addcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 ax-addcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ )