Metamath Proof Explorer


Theorem riotacl

Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011)

Ref Expression
Assertion riotacl ∃!xAφιxA|φA

Proof

Step Hyp Ref Expression
1 ssrab2 xA|φA
2 riotacl2 ∃!xAφιxA|φxA|φ
3 1 2 sselid ∃!xAφιxA|φA