Metamath Proof Explorer


Theorem riotacl

Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011)

Ref Expression
Assertion riotacl ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥𝐴𝜑 } ⊆ 𝐴
2 riotacl2 ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ { 𝑥𝐴𝜑 } )
3 1 2 sselid ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ 𝐴 )