Metamath Proof Explorer


Theorem riotasbc

Description: Substitution law for descriptions. Compare iotasbc . (Contributed by NM, 23-Aug-2011) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotasbc ( ∃! 𝑥𝐴 𝜑[ ( 𝑥𝐴 𝜑 ) / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 rabssab { 𝑥𝐴𝜑 } ⊆ { 𝑥𝜑 }
2 riotacl2 ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ { 𝑥𝐴𝜑 } )
3 1 2 sselid ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 𝜑 ) ∈ { 𝑥𝜑 } )
4 df-sbc ( [ ( 𝑥𝐴 𝜑 ) / 𝑥 ] 𝜑 ↔ ( 𝑥𝐴 𝜑 ) ∈ { 𝑥𝜑 } )
5 3 4 sylibr ( ∃! 𝑥𝐴 𝜑[ ( 𝑥𝐴 𝜑 ) / 𝑥 ] 𝜑 )