Description: Substitution law for descriptions. Compare iotasbc . (Contributed by NM, 23-Aug-2011) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | riotasbc | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜑 } | |
2 | riotacl2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) | |
3 | 1 2 | sselid | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ { 𝑥 ∣ 𝜑 } ) |
4 | df-sbc | ⊢ ( [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ { 𝑥 ∣ 𝜑 } ) | |
5 | 3 4 | sylibr | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → [ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) / 𝑥 ] 𝜑 ) |