| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc5 |
⊢ ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ) |
| 2 |
|
iotaexeu |
⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ V ) |
| 3 |
|
eueq |
⊢ ( ( ℩ 𝑥 𝜑 ) ∈ V ↔ ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( ∃! 𝑥 𝜑 → ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 5 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
| 6 |
|
iotaval |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) |
| 7 |
6
|
eqcomd |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → 𝑦 = ( ℩ 𝑥 𝜑 ) ) |
| 8 |
7
|
ancri |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 9 |
8
|
eximi |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 10 |
5 9
|
sylbi |
⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 11 |
|
eupick |
⊢ ( ( ∃! 𝑦 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) → ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( ∃! 𝑥 𝜑 → ( 𝑦 = ( ℩ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 13 |
12 7
|
impbid1 |
⊢ ( ∃! 𝑥 𝜑 → ( 𝑦 = ( ℩ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) ) |
| 14 |
13
|
anbi1d |
⊢ ( ∃! 𝑥 𝜑 → ( ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |
| 15 |
14
|
exbidv |
⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑦 ( 𝑦 = ( ℩ 𝑥 𝜑 ) ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |
| 16 |
1 15
|
bitrid |
⊢ ( ∃! 𝑥 𝜑 → ( [ ( ℩ 𝑥 𝜑 ) / 𝑦 ] 𝜓 ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝜓 ) ) ) |