Metamath Proof Explorer
		
		
		
		Description:  Inference adding existential quantifier to antecedent and consequent.
       (Contributed by NM, 10-Jan-1993)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | eximi.1 | ⊢ ( 𝜑  →  𝜓 ) | 
				
					|  | Assertion | eximi | ⊢  ( ∃ 𝑥 𝜑  →  ∃ 𝑥 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eximi.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 |  | exim | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝜓 )  →  ( ∃ 𝑥 𝜑  →  ∃ 𝑥 𝜓 ) ) | 
						
							| 3 | 2 1 | mpg | ⊢ ( ∃ 𝑥 𝜑  →  ∃ 𝑥 𝜓 ) |