Metamath Proof Explorer


Theorem eximi

Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis eximi.1
|- ( ph -> ps )
Assertion eximi
|- ( E. x ph -> E. x ps )

Proof

Step Hyp Ref Expression
1 eximi.1
 |-  ( ph -> ps )
2 exim
 |-  ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ps ) )
3 2 1 mpg
 |-  ( E. x ph -> E. x ps )