Metamath Proof Explorer


Theorem eximi

Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993)

Ref Expression
Hypothesis eximi.1 φψ
Assertion eximi xφxψ

Proof

Step Hyp Ref Expression
1 eximi.1 φψ
2 exim xφψxφxψ
3 2 1 mpg xφxψ