Metamath Proof Explorer


Theorem eu6

Description: Alternate definition of the unique existential quantifier df-eu not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Remove use of ax-11 . (Revised by SN, 21-Sep-2023)

Ref Expression
Assertion eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 dfmoeu ( ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
2 1 anbi2i ( ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
3 abai ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑥 𝜑 ∧ ( ∃ 𝑥 𝜑 → ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ) )
4 eu3v ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
5 2 3 4 3bitr4ri ( ∃! 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )
6 abai ( ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) )
7 ancom ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ∃ 𝑥 𝜑 ) )
8 biimpr ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥 = 𝑦𝜑 ) )
9 8 alimi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
10 9 eximi ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) )
11 exsbim ( ∃ 𝑦𝑥 ( 𝑥 = 𝑦𝜑 ) → ∃ 𝑥 𝜑 )
12 10 11 syl ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 )
13 12 biantru ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ↔ ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ∧ ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑥 𝜑 ) ) )
14 6 7 13 3bitr4i ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
15 5 14 bitri ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )