Metamath Proof Explorer


Theorem eu6

Description: Alternate definition of the unique existential quantifier df-eu not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Remove use of ax-11 . (Revised by SN, 21-Sep-2023)

Ref Expression
Assertion eu6 ∃!xφyxφx=y

Proof

Step Hyp Ref Expression
1 dfmoeu xφyxφx=yyxφx=y
2 1 anbi2i xφxφyxφx=yxφyxφx=y
3 abai xφyxφx=yxφxφyxφx=y
4 eu3v ∃!xφxφyxφx=y
5 2 3 4 3bitr4ri ∃!xφxφyxφx=y
6 abai yxφx=yxφyxφx=yyxφx=yxφ
7 ancom xφyxφx=yyxφx=yxφ
8 biimpr φx=yx=yφ
9 8 alimi xφx=yxx=yφ
10 9 eximi yxφx=yyxx=yφ
11 exsbim yxx=yφxφ
12 10 11 syl yxφx=yxφ
13 12 biantru yxφx=yyxφx=yyxφx=yxφ
14 6 7 13 3bitr4i xφyxφx=yyxφx=y
15 5 14 bitri ∃!xφyxφx=y