Metamath Proof Explorer


Theorem eu6im

Description: One direction of eu6 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023)

Ref Expression
Assertion eu6im yxφx=y∃!xφ

Proof

Step Hyp Ref Expression
1 exsbim yxx=yφxφ
2 1 anim1i yxx=yφzxφx=zxφzxφx=z
3 eu6lem yxφx=yyxx=yφzxφx=z
4 eu3v ∃!xφxφzxφx=z
5 2 3 4 3imtr4i yxφx=y∃!xφ