Metamath Proof Explorer


Theorem eu6lem

Description: Lemma of eu6im . A dissection of an idiom characterizing existential uniqueness. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023)

Ref Expression
Assertion eu6lem yxφx=yyxx=yφzxφx=z

Proof

Step Hyp Ref Expression
1 19.42v zxφx=yy=zxφx=yzy=z
2 alsyl xx=yφxφx=zxx=yx=z
3 equvelv xx=yx=zy=z
4 2 3 sylib xx=yφxφx=zy=z
5 4 pm4.71i xx=yφxφx=zxx=yφxφx=zy=z
6 albiim xφx=yxφx=yxx=yφ
7 6 biancomi xφx=yxx=yφxφx=y
8 equequ2 y=zx=yx=z
9 8 imbi2d y=zφx=yφx=z
10 9 albidv y=zxφx=yxφx=z
11 10 anbi2d y=zxx=yφxφx=yxx=yφxφx=z
12 7 11 bitrid y=zxφx=yxx=yφxφx=z
13 12 pm5.32ri xφx=yy=zxx=yφxφx=zy=z
14 5 13 bitr4i xx=yφxφx=zxφx=yy=z
15 14 exbii zxx=yφxφx=zzxφx=yy=z
16 ax6evr zy=z
17 16 biantru xφx=yxφx=yzy=z
18 1 15 17 3bitr4ri xφx=yzxx=yφxφx=z
19 18 exbii yxφx=yyzxx=yφxφx=z
20 exdistrv yzxx=yφxφx=zyxx=yφzxφx=z
21 19 20 bitri yxφx=yyxx=yφzxφx=z