| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) ) |
| 2 |
|
alsyl |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) ) |
| 3 |
|
equvelv |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) ↔ 𝑦 = 𝑧 ) |
| 4 |
2 3
|
sylib |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 5 |
4
|
pm4.71i |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) ) |
| 6 |
|
albiim |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 7 |
6
|
biancomi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 8 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 10 |
9
|
albidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) ) |
| 12 |
7 11
|
bitrid |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) ) |
| 13 |
12
|
pm5.32ri |
⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) ) |
| 14 |
5 13
|
bitr4i |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ) |
| 16 |
|
ax6evr |
⊢ ∃ 𝑧 𝑦 = 𝑧 |
| 17 |
16
|
biantru |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) ) |
| 18 |
1 15 17
|
3bitr4ri |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 19 |
18
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 20 |
|
exdistrv |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 21 |
19 20
|
bitri |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |