Metamath Proof Explorer


Theorem exdistrv

Description: Distribute a pair of existential quantifiers (over disjoint variables) over a conjunction. Combination of 19.41v and 19.42v . For a version with fewer disjoint variable conditions but requiring more axioms, see eeanv . (Contributed by BJ, 30-Sep-2022)

Ref Expression
Assertion exdistrv ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exdistr ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) )
2 19.41v ( ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )
3 1 2 bitri ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )