| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							19.42v | 
							 |-  ( E. z ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) )  | 
						
						
							| 2 | 
							
								
							 | 
							alsyl | 
							 |-  ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> A. x ( x = y -> x = z ) )  | 
						
						
							| 3 | 
							
								
							 | 
							equvelv | 
							 |-  ( A. x ( x = y -> x = z ) <-> y = z )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylib | 
							 |-  ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> y = z )  | 
						
						
							| 5 | 
							
								4
							 | 
							pm4.71i | 
							 |-  ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) )  | 
						
						
							| 6 | 
							
								
							 | 
							albiim | 
							 |-  ( A. x ( ph <-> x = y ) <-> ( A. x ( ph -> x = y ) /\ A. x ( x = y -> ph ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biancomi | 
							 |-  ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							equequ2 | 
							 |-  ( y = z -> ( x = y <-> x = z ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imbi2d | 
							 |-  ( y = z -> ( ( ph -> x = y ) <-> ( ph -> x = z ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							albidv | 
							 |-  ( y = z -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = z ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							anbi2d | 
							 |-  ( y = z -> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							bitrid | 
							 |-  ( y = z -> ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							pm5.32ri | 
							 |-  ( ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) )  | 
						
						
							| 14 | 
							
								5 13
							 | 
							bitr4i | 
							 |-  ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( A. x ( ph <-> x = y ) /\ y = z ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							exbii | 
							 |-  ( E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> E. z ( A. x ( ph <-> x = y ) /\ y = z ) )  | 
						
						
							| 16 | 
							
								
							 | 
							ax6evr | 
							 |-  E. z y = z  | 
						
						
							| 17 | 
							
								16
							 | 
							biantru | 
							 |-  ( A. x ( ph <-> x = y ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) )  | 
						
						
							| 18 | 
							
								1 15 17
							 | 
							3bitr4ri | 
							 |-  ( A. x ( ph <-> x = y ) <-> E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							exbii | 
							 |-  ( E. y A. x ( ph <-> x = y ) <-> E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							exdistrv | 
							 |-  ( E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							bitri | 
							 |-  ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) )  |