Metamath Proof Explorer


Theorem albidv

Description: Formula-building rule for universal quantifier (deduction form). See also albidh and albid . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis albidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion albidv
|- ( ph -> ( A. x ps <-> A. x ch ) )

Proof

Step Hyp Ref Expression
1 albidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 ax-5
 |-  ( ph -> A. x ph )
3 2 1 albidh
 |-  ( ph -> ( A. x ps <-> A. x ch ) )