Metamath Proof Explorer


Theorem riotasbc

Description: Substitution law for descriptions. Compare iotasbc . (Contributed by NM, 23-Aug-2011) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion riotasbc
|- ( E! x e. A ph -> [. ( iota_ x e. A ph ) / x ]. ph )

Proof

Step Hyp Ref Expression
1 rabssab
 |-  { x e. A | ph } C_ { x | ph }
2 riotacl2
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } )
3 1 2 sselid
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x | ph } )
4 df-sbc
 |-  ( [. ( iota_ x e. A ph ) / x ]. ph <-> ( iota_ x e. A ph ) e. { x | ph } )
5 3 4 sylibr
 |-  ( E! x e. A ph -> [. ( iota_ x e. A ph ) / x ]. ph )