Description: Substitution law for descriptions. Compare iotasbc . (Contributed by NM, 23-Aug-2011) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | riotasbc | |- ( E! x e. A ph -> [. ( iota_ x e. A ph ) / x ]. ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssab | |- { x e. A | ph } C_ { x | ph } |
|
2 | riotacl2 | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } ) |
|
3 | 1 2 | sselid | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x | ph } ) |
4 | df-sbc | |- ( [. ( iota_ x e. A ph ) / x ]. ph <-> ( iota_ x e. A ph ) e. { x | ph } ) |
|
5 | 3 4 | sylibr | |- ( E! x e. A ph -> [. ( iota_ x e. A ph ) / x ]. ph ) |