Metamath Proof Explorer


Theorem riotacl

Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011)

Ref Expression
Assertion riotacl
|- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A )

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. A | ph } C_ A
2 riotacl2
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } )
3 1 2 sselid
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. A )