Metamath Proof Explorer


Theorem sselid

Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014)

Ref Expression
Hypotheses sseli.1 AB
sselid.2 φCA
Assertion sselid φCB

Proof

Step Hyp Ref Expression
1 sseli.1 AB
2 sselid.2 φCA
3 1 sseli CACB
4 2 3 syl φCB