Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
|
2 |
|
ax-1cn |
|
3 |
|
cnre |
|
4 |
2 3
|
ax-mp |
|
5 |
|
neeq1 |
|
6 |
5
|
biimpcd |
|
7 |
|
0cn |
|
8 |
|
cnre |
|
9 |
7 8
|
ax-mp |
|
10 |
|
neeq2 |
|
11 |
10
|
biimpcd |
|
12 |
11
|
reximdv |
|
13 |
12
|
reximdv |
|
14 |
6 9 13
|
syl6mpi |
|
15 |
14
|
reximdv |
|
16 |
15
|
reximdv |
|
17 |
4 16
|
mpi |
|
18 |
|
ioran |
|
19 |
|
df-ne |
|
20 |
19
|
con2bii |
|
21 |
|
df-ne |
|
22 |
21
|
con2bii |
|
23 |
20 22
|
anbi12i |
|
24 |
18 23
|
bitr4i |
|
25 |
|
id |
|
26 |
|
oveq2 |
|
27 |
25 26
|
oveqan12d |
|
28 |
24 27
|
sylbi |
|
29 |
28
|
necon1ai |
|
30 |
|
neeq1 |
|
31 |
|
neeq2 |
|
32 |
30 31
|
rspc2ev |
|
33 |
32
|
3expia |
|
34 |
33
|
ad2ant2r |
|
35 |
|
neeq1 |
|
36 |
|
neeq2 |
|
37 |
35 36
|
rspc2ev |
|
38 |
37
|
3expia |
|
39 |
38
|
ad2ant2l |
|
40 |
34 39
|
jaod |
|
41 |
29 40
|
syl5 |
|
42 |
41
|
rexlimdvva |
|
43 |
42
|
rexlimivv |
|
44 |
1 17 43
|
mp2b |
|
45 |
|
eqtr3 |
|
46 |
45
|
ex |
|
47 |
46
|
necon3d |
|
48 |
|
neeq1 |
|
49 |
48
|
rspcev |
|
50 |
49
|
expcom |
|
51 |
47 50
|
syl6 |
|
52 |
51
|
com23 |
|
53 |
52
|
adantld |
|
54 |
|
neeq1 |
|
55 |
54
|
rspcev |
|
56 |
55
|
expcom |
|
57 |
56
|
adantrd |
|
58 |
57
|
a1dd |
|
59 |
53 58
|
pm2.61ine |
|
60 |
59
|
rexlimivv |
|
61 |
|
ax-rrecex |
|
62 |
|
remulcl |
|
63 |
62
|
adantlr |
|
64 |
|
eleq1 |
|
65 |
63 64
|
syl5ibcom |
|
66 |
65
|
rexlimdva |
|
67 |
61 66
|
mpd |
|
68 |
67
|
rexlimiva |
|
69 |
44 60 68
|
mp2b |
|