Metamath Proof Explorer


Theorem 1re

Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion 1re 1

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 ax-1cn 1
3 cnre 1 a b 1 = a + i b
4 2 3 ax-mp a b 1 = a + i b
5 neeq1 1 = a + i b 1 0 a + i b 0
6 5 biimpcd 1 0 1 = a + i b a + i b 0
7 0cn 0
8 cnre 0 c d 0 = c + i d
9 7 8 ax-mp c d 0 = c + i d
10 neeq2 0 = c + i d a + i b 0 a + i b c + i d
11 10 biimpcd a + i b 0 0 = c + i d a + i b c + i d
12 11 reximdv a + i b 0 d 0 = c + i d d a + i b c + i d
13 12 reximdv a + i b 0 c d 0 = c + i d c d a + i b c + i d
14 6 9 13 syl6mpi 1 0 1 = a + i b c d a + i b c + i d
15 14 reximdv 1 0 b 1 = a + i b b c d a + i b c + i d
16 15 reximdv 1 0 a b 1 = a + i b a b c d a + i b c + i d
17 4 16 mpi 1 0 a b c d a + i b c + i d
18 ioran ¬ a c b d ¬ a c ¬ b d
19 df-ne a c ¬ a = c
20 19 con2bii a = c ¬ a c
21 df-ne b d ¬ b = d
22 21 con2bii b = d ¬ b d
23 20 22 anbi12i a = c b = d ¬ a c ¬ b d
24 18 23 bitr4i ¬ a c b d a = c b = d
25 id a = c a = c
26 oveq2 b = d i b = i d
27 25 26 oveqan12d a = c b = d a + i b = c + i d
28 24 27 sylbi ¬ a c b d a + i b = c + i d
29 28 necon1ai a + i b c + i d a c b d
30 neeq1 x = a x y a y
31 neeq2 y = c a y a c
32 30 31 rspc2ev a c a c x y x y
33 32 3expia a c a c x y x y
34 33 ad2ant2r a b c d a c x y x y
35 neeq1 x = b x y b y
36 neeq2 y = d b y b d
37 35 36 rspc2ev b d b d x y x y
38 37 3expia b d b d x y x y
39 38 ad2ant2l a b c d b d x y x y
40 34 39 jaod a b c d a c b d x y x y
41 29 40 syl5 a b c d a + i b c + i d x y x y
42 41 rexlimdvva a b c d a + i b c + i d x y x y
43 42 rexlimivv a b c d a + i b c + i d x y x y
44 1 17 43 mp2b x y x y
45 eqtr3 x = 0 y = 0 x = y
46 45 ex x = 0 y = 0 x = y
47 46 necon3d x = 0 x y y 0
48 neeq1 z = y z 0 y 0
49 48 rspcev y y 0 z z 0
50 49 expcom y 0 y z z 0
51 47 50 syl6 x = 0 x y y z z 0
52 51 com23 x = 0 y x y z z 0
53 52 adantld x = 0 x y x y z z 0
54 neeq1 z = x z 0 x 0
55 54 rspcev x x 0 z z 0
56 55 expcom x 0 x z z 0
57 56 adantrd x 0 x y z z 0
58 57 a1dd x 0 x y x y z z 0
59 53 58 pm2.61ine x y x y z z 0
60 59 rexlimivv x y x y z z 0
61 ax-rrecex z z 0 x z x = 1
62 remulcl z x z x
63 62 adantlr z z 0 x z x
64 eleq1 z x = 1 z x 1
65 63 64 syl5ibcom z z 0 x z x = 1 1
66 65 rexlimdva z z 0 x z x = 1 1
67 61 66 mpd z z 0 1
68 67 rexlimiva z z 0 1
69 44 60 68 mp2b 1