| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
|
| 2 |
|
ax-1cn |
|
| 3 |
|
cnre |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
neeq1 |
|
| 6 |
5
|
biimpcd |
|
| 7 |
|
0cn |
|
| 8 |
|
cnre |
|
| 9 |
7 8
|
ax-mp |
|
| 10 |
|
neeq2 |
|
| 11 |
10
|
biimpcd |
|
| 12 |
11
|
reximdv |
|
| 13 |
12
|
reximdv |
|
| 14 |
6 9 13
|
syl6mpi |
|
| 15 |
14
|
reximdv |
|
| 16 |
15
|
reximdv |
|
| 17 |
4 16
|
mpi |
|
| 18 |
|
ioran |
|
| 19 |
|
df-ne |
|
| 20 |
19
|
con2bii |
|
| 21 |
|
df-ne |
|
| 22 |
21
|
con2bii |
|
| 23 |
20 22
|
anbi12i |
|
| 24 |
18 23
|
bitr4i |
|
| 25 |
|
id |
|
| 26 |
|
oveq2 |
|
| 27 |
25 26
|
oveqan12d |
|
| 28 |
24 27
|
sylbi |
|
| 29 |
28
|
necon1ai |
|
| 30 |
|
neeq1 |
|
| 31 |
|
neeq2 |
|
| 32 |
30 31
|
rspc2ev |
|
| 33 |
32
|
3expia |
|
| 34 |
33
|
ad2ant2r |
|
| 35 |
|
neeq1 |
|
| 36 |
|
neeq2 |
|
| 37 |
35 36
|
rspc2ev |
|
| 38 |
37
|
3expia |
|
| 39 |
38
|
ad2ant2l |
|
| 40 |
34 39
|
jaod |
|
| 41 |
29 40
|
syl5 |
|
| 42 |
41
|
rexlimdvva |
|
| 43 |
42
|
rexlimivv |
|
| 44 |
1 17 43
|
mp2b |
|
| 45 |
|
eqtr3 |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
necon3d |
|
| 48 |
|
neeq1 |
|
| 49 |
48
|
rspcev |
|
| 50 |
49
|
expcom |
|
| 51 |
47 50
|
syl6 |
|
| 52 |
51
|
com23 |
|
| 53 |
52
|
adantld |
|
| 54 |
|
neeq1 |
|
| 55 |
54
|
rspcev |
|
| 56 |
55
|
expcom |
|
| 57 |
56
|
adantrd |
|
| 58 |
57
|
a1dd |
|
| 59 |
53 58
|
pm2.61ine |
|
| 60 |
59
|
rexlimivv |
|
| 61 |
|
ax-rrecex |
|
| 62 |
|
remulcl |
|
| 63 |
62
|
adantlr |
|
| 64 |
|
eleq1 |
|
| 65 |
63 64
|
syl5ibcom |
|
| 66 |
65
|
rexlimdva |
|
| 67 |
61 66
|
mpd |
|
| 68 |
67
|
rexlimiva |
|
| 69 |
44 60 68
|
mp2b |
|