Metamath Proof Explorer


Theorem isummulc2

Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z=M
isumcl.2 φM
isumcl.3 φkZFk=A
isumcl.4 φkZA
isumcl.5 φseqM+Fdom
summulc.6 φB
Assertion isummulc2 φBkZA=kZBA

Proof

Step Hyp Ref Expression
1 isumcl.1 Z=M
2 isumcl.2 φM
3 isumcl.3 φkZFk=A
4 isumcl.4 φkZA
5 isumcl.5 φseqM+Fdom
6 summulc.6 φB
7 eqidd φmZkZBAm=kZBAm
8 6 adantr φkZB
9 8 4 mulcld φkZBA
10 9 fmpttd φkZBA:Z
11 10 ffvelcdmda φmZkZBAm
12 1 2 3 4 5 isumclim2 φseqM+FkZA
13 3 4 eqeltrd φkZFk
14 13 ralrimiva φkZFk
15 fveq2 k=mFk=Fm
16 15 eleq1d k=mFkFm
17 16 rspccva kZFkmZFm
18 14 17 sylan φmZFm
19 simpr φkZkZ
20 ovex BAV
21 eqid kZBA=kZBA
22 21 fvmpt2 kZBAVkZBAk=BA
23 19 20 22 sylancl φkZkZBAk=BA
24 3 oveq2d φkZBFk=BA
25 23 24 eqtr4d φkZkZBAk=BFk
26 25 ralrimiva φkZkZBAk=BFk
27 nffvmpt1 _kkZBAm
28 27 nfeq1 kkZBAm=BFm
29 fveq2 k=mkZBAk=kZBAm
30 15 oveq2d k=mBFk=BFm
31 29 30 eqeq12d k=mkZBAk=BFkkZBAm=BFm
32 28 31 rspc mZkZkZBAk=BFkkZBAm=BFm
33 26 32 mpan9 φmZkZBAm=BFm
34 1 2 6 12 18 33 isermulc2 φseqM+kZBABkZA
35 1 2 7 11 34 isumclim φmZkZBAm=BkZA
36 sumfc mZkZBAm=kZBA
37 35 36 eqtr3di φBkZA=kZBA