Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumcl.1 | |
|
isumcl.2 | |
||
isumcl.3 | |
||
isumcl.4 | |
||
isumcl.5 | |
||
summulc.6 | |
||
Assertion | isummulc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | |
|
2 | isumcl.2 | |
|
3 | isumcl.3 | |
|
4 | isumcl.4 | |
|
5 | isumcl.5 | |
|
6 | summulc.6 | |
|
7 | eqidd | |
|
8 | 6 | adantr | |
9 | 8 4 | mulcld | |
10 | 9 | fmpttd | |
11 | 10 | ffvelcdmda | |
12 | 1 2 3 4 5 | isumclim2 | |
13 | 3 4 | eqeltrd | |
14 | 13 | ralrimiva | |
15 | fveq2 | |
|
16 | 15 | eleq1d | |
17 | 16 | rspccva | |
18 | 14 17 | sylan | |
19 | simpr | |
|
20 | ovex | |
|
21 | eqid | |
|
22 | 21 | fvmpt2 | |
23 | 19 20 22 | sylancl | |
24 | 3 | oveq2d | |
25 | 23 24 | eqtr4d | |
26 | 25 | ralrimiva | |
27 | nffvmpt1 | |
|
28 | 27 | nfeq1 | |
29 | fveq2 | |
|
30 | 15 | oveq2d | |
31 | 29 30 | eqeq12d | |
32 | 28 31 | rspc | |
33 | 26 32 | mpan9 | |
34 | 1 2 6 12 18 33 | isermulc2 | |
35 | 1 2 7 11 34 | isumclim | |
36 | sumfc | |
|
37 | 35 36 | eqtr3di | |