Metamath Proof Explorer


Theorem isummulc1

Description: An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z=M
isumcl.2 φM
isumcl.3 φkZFk=A
isumcl.4 φkZA
isumcl.5 φseqM+Fdom
summulc.6 φB
Assertion isummulc1 φkZAB=kZAB

Proof

Step Hyp Ref Expression
1 isumcl.1 Z=M
2 isumcl.2 φM
3 isumcl.3 φkZFk=A
4 isumcl.4 φkZA
5 isumcl.5 φseqM+Fdom
6 summulc.6 φB
7 1 2 3 4 5 6 isummulc2 φBkZA=kZBA
8 1 2 3 4 5 isumcl φkZA
9 8 6 mulcomd φkZAB=BkZA
10 6 adantr φkZB
11 4 10 mulcomd φkZAB=BA
12 11 sumeq2dv φkZAB=kZBA
13 7 9 12 3eqtr4d φkZAB=kZAB