| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumcl.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isumcl.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
isumcl.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
| 4 |
|
isumcl.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 5 |
|
isumcl.5 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 6 |
|
summulc.6 |
|- ( ph -> B e. CC ) |
| 7 |
1 2 3 4 5 6
|
isummulc2 |
|- ( ph -> ( B x. sum_ k e. Z A ) = sum_ k e. Z ( B x. A ) ) |
| 8 |
1 2 3 4 5
|
isumcl |
|- ( ph -> sum_ k e. Z A e. CC ) |
| 9 |
8 6
|
mulcomd |
|- ( ph -> ( sum_ k e. Z A x. B ) = ( B x. sum_ k e. Z A ) ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 11 |
4 10
|
mulcomd |
|- ( ( ph /\ k e. Z ) -> ( A x. B ) = ( B x. A ) ) |
| 12 |
11
|
sumeq2dv |
|- ( ph -> sum_ k e. Z ( A x. B ) = sum_ k e. Z ( B x. A ) ) |
| 13 |
7 9 12
|
3eqtr4d |
|- ( ph -> ( sum_ k e. Z A x. B ) = sum_ k e. Z ( A x. B ) ) |