| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isumcl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 4 |
|
isumcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 5 |
|
isumcl.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 6 |
|
summulc.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 7 |
1 2 3 4 5 6
|
isummulc2 |
⊢ ( 𝜑 → ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |
| 8 |
1 2 3 4 5
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 9 |
8 6
|
mulcomd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · 𝐵 ) = ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
| 10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 11 |
4 10
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 12 |
11
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |
| 13 |
7 9 12
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 · 𝐵 ) ) |