Metamath Proof Explorer
Description: Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
addcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
addcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
Assertion |
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
addcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |