Metamath Proof Explorer


Theorem mulcom

Description: Alias for ax-mulcom , for naming consistency with mulcomi . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ax-mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )