Metamath Proof Explorer


Theorem mulcom

Description: Alias for ax-mulcom , for naming consistency with mulcomi . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion mulcom
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) )

Proof

Step Hyp Ref Expression
1 ax-mulcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) )