Metamath Proof Explorer


Theorem addass

Description: Alias for ax-addass , for naming consistency with addassi . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion addass
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) )

Proof

Step Hyp Ref Expression
1 ax-addass
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) )