Metamath Proof Explorer
Description: Alias for axaddass , for naming consistency with addassi .
(Contributed by NM, 10Mar2008)


Ref 
Expression 

Assertion 
addass 
$${\u22a2}\left({A}\in \u2102\wedge {B}\in \u2102\wedge {C}\in \u2102\right)\to {A}+{B}+{C}={A}+{B}+{C}$$ 
Proof
Step 
Hyp 
Ref 
Expression 
1 

axaddass 
$${\u22a2}\left({A}\in \u2102\wedge {B}\in \u2102\wedge {C}\in \u2102\right)\to {A}+{B}+{C}={A}+{B}+{C}$$ 