Metamath Proof Explorer


Theorem mulass

Description: Alias for ax-mulass , for naming consistency with mulassi . (Contributed by NM, 10-Mar-2008)

Ref Expression
Assertion mulass
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) )

Proof

Step Hyp Ref Expression
1 ax-mulass
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) )