Metamath Proof Explorer


Theorem mulcomd

Description: Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φA
addcld.2 φB
Assertion mulcomd φAB=BA

Proof

Step Hyp Ref Expression
1 addcld.1 φA
2 addcld.2 φB
3 mulcom ABAB=BA
4 1 2 3 syl2anc φAB=BA