Step |
Hyp |
Ref |
Expression |
1 |
|
isumcl.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumcl.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumcl.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumcl.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isumcl.5 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
6 |
|
summulc.6 |
|- ( ph -> B e. CC ) |
7 |
|
isumdivc.7 |
|- ( ph -> B =/= 0 ) |
8 |
6 7
|
reccld |
|- ( ph -> ( 1 / B ) e. CC ) |
9 |
1 2 3 4 5 8
|
isummulc1 |
|- ( ph -> ( sum_ k e. Z A x. ( 1 / B ) ) = sum_ k e. Z ( A x. ( 1 / B ) ) ) |
10 |
1 2 3 4 5
|
isumcl |
|- ( ph -> sum_ k e. Z A e. CC ) |
11 |
10 6 7
|
divrecd |
|- ( ph -> ( sum_ k e. Z A / B ) = ( sum_ k e. Z A x. ( 1 / B ) ) ) |
12 |
6
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
13 |
7
|
adantr |
|- ( ( ph /\ k e. Z ) -> B =/= 0 ) |
14 |
4 12 13
|
divrecd |
|- ( ( ph /\ k e. Z ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
15 |
14
|
sumeq2dv |
|- ( ph -> sum_ k e. Z ( A / B ) = sum_ k e. Z ( A x. ( 1 / B ) ) ) |
16 |
9 11 15
|
3eqtr4d |
|- ( ph -> ( sum_ k e. Z A / B ) = sum_ k e. Z ( A / B ) ) |