Metamath Proof Explorer


Theorem mulcld

Description: Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φA
addcld.2 φB
Assertion mulcld φAB

Proof

Step Hyp Ref Expression
1 addcld.1 φA
2 addcld.2 φB
3 mulcl ABAB
4 1 2 3 syl2anc φAB