Metamath Proof Explorer


Theorem isumclim2

Description: A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1 Z=M
isumclim.2 φM
isumclim.3 φkZFk=A
isumclim.4 φkZA
isumclim2.5 φseqM+Fdom
Assertion isumclim2 φseqM+FkZA

Proof

Step Hyp Ref Expression
1 isumclim.1 Z=M
2 isumclim.2 φM
3 isumclim.3 φkZFk=A
4 isumclim.4 φkZA
5 isumclim2.5 φseqM+Fdom
6 climdm seqM+FdomseqM+FseqM+F
7 5 6 sylib φseqM+FseqM+F
8 1 2 3 4 isum φkZA=seqM+F
9 7 8 breqtrrd φseqM+FkZA