Metamath Proof Explorer


Theorem breqtrrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses breqtrrd.1 φ A R B
breqtrrd.2 φ C = B
Assertion breqtrrd φ A R C

Proof

Step Hyp Ref Expression
1 breqtrrd.1 φ A R B
2 breqtrrd.2 φ C = B
3 2 eqcomd φ B = C
4 1 3 breqtrd φ A R C