Metamath Proof Explorer


Theorem breqtrrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses breqtrrd.1 φARB
breqtrrd.2 φC=B
Assertion breqtrrd φARC

Proof

Step Hyp Ref Expression
1 breqtrrd.1 φARB
2 breqtrrd.2 φC=B
3 2 eqcomd φB=C
4 1 3 breqtrd φARC