Metamath Proof Explorer


Theorem breqtrrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses breqtrrd.1 ( 𝜑𝐴 𝑅 𝐵 )
breqtrrd.2 ( 𝜑𝐶 = 𝐵 )
Assertion breqtrrd ( 𝜑𝐴 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 breqtrrd.1 ( 𝜑𝐴 𝑅 𝐵 )
2 breqtrrd.2 ( 𝜑𝐶 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐶 )
4 1 3 breqtrd ( 𝜑𝐴 𝑅 𝐶 )