Metamath Proof Explorer


Theorem 3brtr3i

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses 3brtr3.1 ARB
3brtr3.2 A=C
3brtr3.3 B=D
Assertion 3brtr3i CRD

Proof

Step Hyp Ref Expression
1 3brtr3.1 ARB
2 3brtr3.2 A=C
3 3brtr3.3 B=D
4 2 1 eqbrtrri CRB
5 4 3 breqtri CRD