Metamath Proof Explorer


Theorem 3brtr4i

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypotheses 3brtr4.1 ARB
3brtr4.2 C=A
3brtr4.3 D=B
Assertion 3brtr4i CRD

Proof

Step Hyp Ref Expression
1 3brtr4.1 ARB
2 3brtr4.2 C=A
3 3brtr4.3 D=B
4 2 1 eqbrtri CRB
5 4 3 breqtrri CRD