Metamath Proof Explorer


Theorem isumclim2

Description: A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1
|- Z = ( ZZ>= ` M )
isumclim.2
|- ( ph -> M e. ZZ )
isumclim.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumclim.4
|- ( ( ph /\ k e. Z ) -> A e. CC )
isumclim2.5
|- ( ph -> seq M ( + , F ) e. dom ~~> )
Assertion isumclim2
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A )

Proof

Step Hyp Ref Expression
1 isumclim.1
 |-  Z = ( ZZ>= ` M )
2 isumclim.2
 |-  ( ph -> M e. ZZ )
3 isumclim.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
4 isumclim.4
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
5 isumclim2.5
 |-  ( ph -> seq M ( + , F ) e. dom ~~> )
6 climdm
 |-  ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
7 5 6 sylib
 |-  ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
8 1 2 3 4 isum
 |-  ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) )
9 7 8 breqtrrd
 |-  ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A )