Metamath Proof Explorer


Theorem isum

Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)

Ref Expression
Hypotheses zsum.1
|- Z = ( ZZ>= ` M )
zsum.2
|- ( ph -> M e. ZZ )
isum.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
isum.4
|- ( ( ph /\ k e. Z ) -> B e. CC )
Assertion isum
|- ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , F ) ) )

Proof

Step Hyp Ref Expression
1 zsum.1
 |-  Z = ( ZZ>= ` M )
2 zsum.2
 |-  ( ph -> M e. ZZ )
3 isum.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = B )
4 isum.4
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
5 ssidd
 |-  ( ph -> Z C_ Z )
6 iftrue
 |-  ( k e. Z -> if ( k e. Z , B , 0 ) = B )
7 6 adantl
 |-  ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 0 ) = B )
8 3 7 eqtr4d
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 0 ) )
9 1 2 5 8 4 zsum
 |-  ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , F ) ) )