Metamath Proof Explorer


Theorem isum

Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)

Ref Expression
Hypotheses zsum.1 Z=M
zsum.2 φM
isum.3 φkZFk=B
isum.4 φkZB
Assertion isum φkZB=seqM+F

Proof

Step Hyp Ref Expression
1 zsum.1 Z=M
2 zsum.2 φM
3 isum.3 φkZFk=B
4 isum.4 φkZB
5 ssidd φZZ
6 iftrue kZifkZB0=B
7 6 adantl φkZifkZB0=B
8 3 7 eqtr4d φkZFk=ifkZB0
9 1 2 5 8 4 zsum φkZB=seqM+F